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Recent studies have demonstrated the strong influence of end effects on low-Reynolds- 
number bluff body wakes, and a number of questions remain concerning the intrinsic 
nature of three-dimensional phenomena in two-dimensional configurations. Some of 
them are answered by the present study which investigates the wake of bluff rings (i.e. 
bodies without ends) both experimentally and by application of the phenomenological 
Ginzburg-Landau model. The model turns out to be very accurate in describing 
qualitative and quantitative observations in a large Reynolds number interval. The 
experimental study of the periodic vortex shedding regime shows the existence of 
discrete shedding modes, in which the wake takes the form of parallel vortex rings or 
' oblique' helical vortices, depending on initial conditions. The Strouhal number is 
found to decrease with growing body curvature, and a global expression for the 
Strouhal-Reynolds number relation, including curvature and shedding angle, is 
proposed, which is consistent with previous straight cylinder results. A secondary 
instability of the helical modes at low Reynolds numbers is discovered, and a detailed 
comparison with the Ginzburg-Landau model identifies it as the Eckhaus modulational 
instability of the spanwise structure of the near-wake formation region. It is 
independent of curvature and its clear observation in straight cylinder wakes is 
inhibited by end effects. 

The dynamical model is extended to higher Reynolds numbers by introducing 
variable parameters. In this way the instability of periodic vortex shedding which 
marks the beginning of the transition range is characterized as the Benjamin-Feir 
instability of the coupled oscillation of the near wake. It is independent of the shear 
layer transition to turbulence, which is known to occur at higher Reynolds numbers. 
The unusual shape of the Strouhal curve in this flow regime, including the discontinuity 
at the transition point, is qualitatively reproduced by the Ginzburg-Landau model. 
End effects in finite cylinder wakes are found to cause important changes in the 
transition behaviour also: they create a second Strouhal discontinuity, which is not 
observed in the present ring wake experiments. 

1. Introduction 
The flow around bluff bodies, and especially the problem of an infinite circular 

cylinder placed in a uniform crossflow, has received considerable attention in the past, 
both from engineering and fundamental points of view. In the absence of analytical 
solutions for this conceptually simple problem, except for very low Reynolds numbers, 
most of the present knowledge comes from experimental and, more recently, numerical 
work. 

The basic flow feature at low Reynolds numbers is the Benard-von Karman 
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instability, i.e. the passage from stationary to oscillating flow with the formation of a 
regular ‘vortex street’ in the cylinder wake. Although this phenomenon has been 
known for over a hundred years, it is only recently that a decisive step in the 
understanding of the periodic vortex shedding regime has been made. From the studies 
of Williamson (1988a, 1989), Eisenlohr & Eckelmann (1990), Konig, Eisenlohr & 
Eckelmann (1989). Albarkde, Provansal & Boyer (1990), Hammache & Gharib (1991), 
and others, it became clear that ‘end effects’ linked to the finite cylinder length in 
experiments had a strong influence on the whole wake, even for very long cylinders 
(hundreds of diameters). They were found to be responsible for a number of three- 
dimensional phenomena which had been observed in this nominally two-dimensionally 
configuration: oblique instead of parallel vortex shedding (see e.g. a discussion of 
‘older’ results in Berger & Wille 1972), spanwise cells of different shedding frequencies 
(Gerich & Eckelmann 1982), vortex splitting (Eisenlohr & Eckelmann 1989) and vortex 
dislocations (Williamson 1989, 1992). Furthermore Williamson (1989) showed that the 
frequently observed discontinuities in the Strouhal-Reynolds number relationship 
(Strouhal number being the non-dimensional shedding frequency), were directly 
related to these three-dimensional phenomena, thus ending a thirty-year long debate 
on the reality and the causes of such discontinuities in a ‘clean’ experiment (Tritton 
1959, 1971 ; Gaster 1969, 1971 ; Gerrard 1978; Sreenivasan 1985; Van Atta & Gharib 
1987; and others). When the end conditions are controlled to produce parallel 
shedding, the same Strouhal curve (within 1%) which is continuous in the entire 
periodic vortex shedding range, has now been found by many experimentalists, in 
agreement with two-dimensional numerical simulations (Karniadakis & Triantafyllou 
1989). A review of these recent results can be found in Williamson (1995). 

Typical cylinder end configurations in experiments, such as end plates (angled or 
not) (Williamson 1989), coaxial end cylinders of bigger diameter (Eisenlohr & 
Eckelmann 1989), perpendicular control cylinders upstream (Hammache & Gharib 
1989), or simply the wind tunnel walls, all introduce large-scale perturbations like 
vortex dislocations, spanwise end cells of lower shedding frequency and complicated 
vortex reconnections. Even the rather ‘clean ’ method of end suction, devised recently 
by Miller & Williamson (1994), still represents an external manipulation of the flow, 
and the condition that the flow oscillation has to seize near the ends of the cylinder still 
imposes an important constraint. 

It is therefore desirable to somehow get rid of these conventional end boundary 
conditions. This requirement is fulfilled in the wake of a torus, i.e. a ring with circular 
cross-section, a body with a spanwise periodicity but without ends, which is the subject 
of the present paper. For sufficiently large aspect ratios (ring perimeter/cross-section 
diameter) the additional effects of body curvature are expected to be small and the 
wake should behave very nearly like the wake of a straight circular cylinder subject to 
periodic boundary conditions in the spanwise direction. This is confirmed in the 
present study. 

Despite the fact that the choice of this configuration seems quite natural, it has 
received very little attention in the past, compared to the straight circular cylinder. 
Very preliminary measurements of the vortex shedding frequencies in the laminar wake 
of rings were made by Roshko (1953), who found that they were lower than for circular 
cylinders by a few percent. He also noticed a drastic change in the shape of the Strouhal 
curves for very low aspect ratios. This was confirmed by the measurements of 
Takamoto (1987) and Bearman & Takamoto (1988) for Reynolds numbers around lo4 
and rings of non-circular cross-section, which showed that, for aspect ratios lower than 
about 20, the ring wake behaved more like the wake of a solid disk, while for greater 
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values its appearance was locally close to that of a straight cylinder wake. They also 
showed visualizations of the vortex street behind rings at low Reynolds numbers, made 
up of counter-rotating vortex rings (see also Takamoto & Izumi 1981). It was Monson 
(1965, 1981, 1983) who first showed that this is not the only possible ring wake 
configuration, by visualizing two counter-rotating helical vortices in the wake of high- 
aspect-ratio rings in free fall in a viscous fluid. He was mainly concerned with drag 
characteristics, and his measurements of the Strouhal number, rather difficult in his 
set-up, are not conclusive. All experiments on ring wakes show that the vortex street 
geometry is slightly modified by curvature effects. Instead of being equally spaced, as 
in the case of a straight body, the inner and outer vortices in a ring wake tend to ‘pair’, 
owing to their self-induced velocity. This phenomenon and its influence on the 
shedding frequency is further discussed in this paper. 

Two other studies may be mentioned in this context. The first is a three-dimensional 
numerical simulation by Rivet (1991) of a straight circular cylinder wake with periodic 
boundary conditions, using a lattice gas algorithm. Starting from random noise, he 
observes the development of an oblique vortex street corresponding to a helical wake. 
In the second, Ehrhardt (1979) performs an inviscid linear stability analysis of a street 
of counter-rotating ring vortices, but with unrealistic assumptions about the circulation 
and geometry of the vortex configuration. His visualizations are similar to the ones 
shown by Takamoto (1987). 

Thus the present investigation represents the first systematic study of the wakes 
behind high-aspect-ratio rings at low Reynolds numbers. Concerning the periodic 
vortex shedding regime discussed at the beginning, it shows which of the three- 
dimensional phenomena are intrinsic, i.e. not caused by end effects. Furthermore, new 
phenomena (instability of oblique vortex shedding and mode transitions at low 
Reynolds numbers), which are normally inhibited or hidden by the influence of the end 
conditions, are discovered and characterized by quantitative measurements. 

This work also covers aspects of the so-called transition range, for Reynolds 
numbers just above the periodic regime. Even for straight circular cylinders, the 
phenomena in this region are not clearly understood and little detailed experimental 
data is available. In the transition range, which for circular cylinders was identified and 
described for the first time by Roshko (1953), the periodic vortex shedding becomes 
unstable and the wake fluctuations become rather irregular. Since the first signs of the 
transition to turbulence in the near wake, in the form of high-frequency transition 
waves in the separated shear layers, appear only at much higher Reynolds numbers 
(see e.g. Bloor 1964), this transition is generally attributed to a three-dimensional 
(spanwise) instability of the vortex formation process, based on visualization studies of 
Hama (1957), Gerrard (1978), and, in more detail, Williamson (1992). This spanwise 
near-wake instability is also found in the numerical simulations of Karniadakis & 
Triantafyllou (1992) and the stability analysis of Noack, Konig & Eckelmann (1993), 
but its physical origin is still not clear. 

When increasing the Reynolds number through the transition range, Williamson 
(199 1) observed two discontinuities in the Strouhal curve representing the dominating 
frequencies in the wake of a finite cylinder. He associated the different branches of this 
curve to different modes of vortex shedding, which was supported by his visualization 
studies. In this paper we investigate if and how the transitions between these modes, 
and the corresponding Strouhal discontinuities, are affected by end effects. 

In addition to the purely experimental approach, the ring wake is also studied using 
a dynamical wake model involving a Ginzburg-Landau amplitude equation. It has 
been shown experimentally by Mathis, Provansal & Boyer (1984), and subsequently by 
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Provansal, Maths & Boyer (1987), Sreenivasan, Strykowski & Ohlinger (1986), and 
Schumm, Berger & Monkewitz (1994), that the vortex street wake represents a limit- 
cycle oscillation of the entire flow, which is the saturated result of a time-amplified linear 
global instability (see Huerre & Monkewitz 1990 for a review on the concept of global 
oscillation modes). Transient experiments showed that temporal growth rates and 
nonlinear frequency variations do indeed not depend on the measuring point, which 
means that the dynamics of the entire two-dimensional wake can be described by a single 
Stuart-Landau equation. The parameters of this phenomenological model could be 
determined from experiments and the onset of vortex shedding was identified as a 
supercritical Hopf bifurcation with a change of sign of the temporal growth rate at the 
threshold. In order to incorporate three-dimensional phenomena, Albarkde (1 99 1) 
recently extended this model by adding a diffusive coupling in the spanwise direction. 
This leads to a Ginzburg-Landau equation, which is well known in the description of 
spatial patterns in closed systems, such as Rayleigh-BCnard convection or Taylor 
vortex flow (see the review by Cross & Hohenberg 1993). When applied to circular 
cylinders, the Ginzburg-Landau model is able to reproduce a great number of obsered 
three-dimensional wake dynamics, as shown by Albarede et al. (1990), Albarede & 
Monkewitz (1992), and Albarede & Provansal (1995). They also made quantitative 
comparisons with experimental data and deduced further parameters from the latter. 
Two-dimensional Ginzburg-Landau models also including the downstream direction 
have been studied by Park & Redekopp (1992) and Chiffaudel (1992), but the 
introduction of a streamwise term yielded no qualitatively new results. Here, the one- 
dimensional model of Albartde and co-workers is used to describe and understand the 
phenomena observed in the ring wake experiments. 

Some preliminary results of the present study have been published recently. They 
concern the existence of different modes in ring wakes (Leweke, Provansal & Boyer 
1993a), the observation of a new secondary instability of laminar vortex shedding 
(Leweke, Provansal & Boyer 1993b), as well as some features of the transition range 
and the Ginzburg-Landau model (Leweke & Provansal 1994a,b). Some of these 
results are included in the present paper, together with many further results, to give a 
coherent overview on ring wakes at low Reynolds numbers. 

After a description of the experimental methods in $2, experimental results of the 
ring wake study are presented in $53 and 4 for the periodic regime and the transition 
range respectively. In $5 the Ginzburg-Landau model is recalled and used in a 
qualitative and quantitative way to account for the phenomena observed in the 
periodic regime. In $6  the model is used to give a qualitative interpretation of the 
instability of periodic vortex shedding and some of the observations made in the 
transition range. A discussion and conclusions are given in $7. 

2. Experimental details 
The ring wakes were studied in an open-circuit low-speed wind tunnel with a 1 m 

long square test section (25 cm x 25 cm). The free stream turbulence level was close to 
0.1 % and flow uniformity better than 0.5 YO over 80 YO of the tunnel width. Four rings, 
made of polished or nickel-coated brass, with different outer diameters D and cross- 
section diameters d were used, covering a range of aspect ratios nD/d from 30 to 100. 
These are well above the limiting value found by Bearman & Takamoto (1988) below 
which a disk wake behaviour is observed. The non-dimensional curvature K = 2d/D, 
which in the case of a ring is equivalent to the aspect ratio, is also used in the following. 
The geometrical data are given in table 1. For comparison several straight circular 
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FIGURE 1. Bluff ring geometry and coordinate system. y = r - 012, z = $012. 

Rings 1 

2.99 
94.6 
99.5 
0.063 1 

48.6 
-3,.. . ,  + 3  
-3.681 

0.1875 
1.236 x 

2 

1.99 
48.2 
76.2 
0.0825 

49.0 
-3,.. . ,  + 3  
-3.667 

0.1868 
1.278 x 

3 

3.03 
56.9 
59.0 

49.8 
-2,.. . ,  + 3  
- 3.683 

0.1874 
1.183 x 

0.106 

4 

3.06 
30.6 
31.5 

52.4 
0.199 

-l,O, + 1  
- 3.696 

0.1885 
0.986 x 

TABLE 1. Ring wake data concerning body geometry, the critical Reynolds number, the modes, 
and the Strouhal curve (3.5) of parallel shedding in the periodic regime. 

cylinders with aspect ratios (length Lldiameter d )  between 80 and 120 were also used. 
To ensure parallel shedding in the periodic regimes, these steel cylinders were fitted 
either with angled end plates (Williamson 1989) or with end cylinders according to 
Eisenlohr & Eckelmann (1989). 

The rings were held in a plane perpendicular to the flow at 15 m from the entry of 
the test section by four 0.08 mm diameter metal wires (see figure l), which were fixed 
on a frame outside the test section and tightened by weights. The body-to-wire 
diameter ratio was 38 for three of the four rings and 25 for the remaining one. The 
wires were soldered into 0.5 mm holes at 135" from the front stagnation point of the 
ring cross-section in order to reduce the perturbation of the boundary layer. Alignment 
of the ring perpendicular to the flow with a precision better than 1" was possible using 
four micrometer screws at the wire ends. 

A simple but sensitive laser-photo diode set-up was used to monitor the oscillations 
of the rings (1 V output per 1 / 100 mm displacement). Although oscillations were never 
completely absent, their amplitude remained well below 1 O h  of the body diameter d 
and were mainly longitudinal, i.e. in the direction of the flow. No influence on the 
amplitude or frequency of vortex shedding could be detected for any of the rings. 

It soon became clear that, in certain Reynolds number intervals of the periodic 
regime, a number of different shedding modes, involving vortex rings and different 
helical vortices, were possible, depending on initial conditions (see $3.1). These modes 
were easily identified by the ' Lissajous ' figures produced on an oscilloscope by the 
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FIGURE 2(a,  b). For caption see facing page. 

outputs of two hot-wire sensors, placed at two fixed spanwise positions. Mode changes 
could be forced with reasonable repeatability by the following method. For a few 
seconds air under pressure was injected into the test section through a hole in the 
sidewall close to the plane of the ring. This violent perturbation destroyed the periodic 
wake and, depending on the transverse position of the jet, created a large-scale swirling 
flow in the test section, which served as a new initial condition for the ring wake. 

The free stream velocity U was measured by laser Doppler anemometry (LDA) in 
the centre of the tunnel cross-section 50 mm upstream of the ring. Corrections were 



The f low behind rings 27 1 

FIGURE 2 .  Visualizations of different ring wake structures at Re = 105, aspect ratio n D / d  = 76.2. 
Flow is from right to  left. The deformations of the cylindrical smoke sheet are visible as bright lines 
which correspond to isophase lines in the wake. They are formed by pairs of counter-rotating vortices, 
thus indicating their spatial structure: (a) closed vortex rings, ( k d )  single, double, and triple helixes. 

made for blockage effects and the downstream evolution of U due to wind tunnel 
boundary layer growth. This was necessary because of the very low velocities 
encountered at low Reynolds numbers. U is an important quantity because it enters 
into both the Reynolds and the Strouhal numbers. The statistical error in U,  resulting 
from the geometric determination of the angle between two laser beams and a voltage 
readout is estimated at 0.3 %. The kinematic viscosity u was calculated from the 
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temperature measured by a calibrated platinum resistance, with a statistical error of 
0.1 %. Velocity measurements in the wake were made using two standard hot-wire 
probes and a computer controlled mobile LDA point. Most measurements were made 
between 5d and 7d downstream of the body and 1-2 diameters off the local wake 
centreline. 

A standard two-channel spectrum analyser, as well as an analogue phase meter, were 
used to obtain wake frequencies f (statistical error less than 0.1 % in the periodic 
regime), spectra, correlation functions, or phase differences. The cross-section diameter 
of the rings was measured mechanically and the average of 20-30 measurements at 
different spanwise positions was taken for d (statistical error 0.2 %). 

For a given ring the statistical errors in Reynolds number Re  = Ud/v  and Strouhal 
number of the laminar regime S = f d / U  are thus estimated at 0.4%. For the 
comparisons between rings 0.2 points have to be added. The additional systematic 
error may be of the same order, but it is likely to be the same for all measurements. The 
relevance of these error estimates becomes clearer in 0 3, where the differences between 
measured Strouhal curves are shown to be quite small. 

Visualizations of the laminar ring wake structures were obtained using the smoke 
wire technique. A circular smoke wire, concentric with the ring, was placed at  about 
10 diameters downstream of the latter. It was held by two thin wires which also 
connected it to the output of an electric power supply. When painted with smoke oil 
and heated by an electric current, it produced a cylindrical smoke sheet which lasted 
for a few seconds. 

More details about the experimental conditions can be found in Leweke (1994). 
In the following, cylindrical coordinates (x, r, 4) as defined in figure 1 are used, with 

the origin at the centre of symmetry of the ring. With reference to cylinder experiments 
the local transverse and spanwise coordinates y = r - D / 2  and z = $D/2  are also 
introduced. 

3. Experimental results. I. The periodic regime 

numbers between 50 and 200 approximately are described. 

3.1. Ring wake shedding modes 
The wake of a ring with high aspect ratio, i.e. small curvature, is locally very similar 
to the wake of a straight body. Therefore the ring can qualitatively be considered as 
a two-dimensional configuration with periodic boundary conditions. The phenomenon 
of oblique vortex shedding observed in periodic circular cylinder wakes would 
therefore also be expected here, but with only discrete shedding angles because of the 
boundary conditions. For the ring geometry this results in different helical structures. 
Figure 2 shows visualizations of four possible configurations in the wake of a ring with 
aspect ratio 76.2 at Re = 105. In figure 2(a)  the vortices are closed rings parallel to the 
body. In figure 2(b-d) they form single, double, or triple helixes of different helix steps. 
It is important to realize that the lines visible in figure 2 are each formed by two 
counter-rotating vortices, and that, for example, the wake in figure 2 ( d )  is made up of 
six interwoven helical vortices. 

These modes can further be characterized by the spanwise evolution of the phase @ 
of the periodic velocity fluctuations in the wake. At a given downstream and transverse 
position, these fluctuations are proportional to sin [27$ + @(z)] (when the harmonics 
are filtered), where t is time and f the wake or vortex shedding frequency. The phase 

In this section experimental observations made in the wake of rings for Reynolds 
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FIGURE 3. Phase difference of the periodic velocity fluctuations as function of spanwise position. Ring 
aspect ratio nD/d = 59.0, Re = 127. Wake modes n = + 3 (O), + 2 (A), + 1 (+), 0 (O),  - 1 (O), and 
-2 (A). 

difference A@ = @(z) - @(O) was obtained for a series of spanwise positions from the 
correlation function of the simultaneous velocity signals from the mobile LDA point 
and a fixed hot wire at  z = 0 serving as a phase reference. Figure 3 shows A@ for all 
the modes observed in the wake of the ring with nD/d = 59.0 at  Re = 127. As expected, 
the phase is nearly linear in the spanwise coordinate for the helical ‘oblique’ modes. 
The almost sinusoidal phase variation of the vortex ring or ‘parallel’ mode results from 
a slight inclination of the vortex rings with respect to the body. This phenomenon, 
which is more pronounced at lower Reynolds numbers, was observed almost 
systematically. It is linked to small imperfections of the ring where the support wires 
are fixed. These variations are also present in the helical modes, but less visible because 
of the stronger underlying linear phase variation. An imporant quantity, which is used 
in $ 5 ,  is the (mean) spanwise wavenumber Q = a@/az. For rings it takes discrete values 
Q, = 2n/D, where n is an integer. It is independent of the streamwise wavelength, 
which is not true for the shedding angle (helix angle) frequently used to characterize 
oblique vortex shedding. In the following the modes are often referred to by their 
winding number n. 

The visualizations in figure 2 (as well as the phase measurements in figure 3 )  were 
made with the same ring at the same Reynolds number, and each of the modes is 
perfectly stable, even robust: the wind tunnel sidewall could be opened and closed 
without ‘losing’ the mode. The domains of stability are shown in figure 4 for the same 
ring as in figure 3. They overlap in large intervals in Reynolds number. The upper limit 
marks the beginning of the transition range, which is discussed in $4. The higher helix 
modes have a tendency to remain stable longer than the lower order or parallel modes. 
The lower limit is associated with a secondary instability of the vortex shedding, shown 
in detail in $ 3.4. 

The key to the selection of the mode which will be observed in a particular run is the 
initial conditions. In the present experiments they could be influenced by the method 
described in the previous section. When the oscillatory state was reached by increasing 
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Transition - 
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the flow smoothly from rest or from subcritical conditions, the parallel mode was 
always selected. This can be explained by the fact that the flow acceleration is ‘in 
phase’ over the whole body span, and, according to figure 4, the parallel mode 0 also 
has the lowest stability limit. This is consistent with the observation that in towing 
tanks the shedding behind circular cylinders is always parallel just after the start of the 
motion, and it also explains why the helical modes have not been observed in the 
majority of the previous investigations of ring wakes. Whenever they appeared there 
had been some kind of messy initial condition. In his experimental study, Monson 
(1965) dropped the rings into the liquid, and Rivet (1991) started his numerical 
simulation from random noise. The present method to switch modes was motivated by 
these ideas. Its limitations, due to the random character of the perturbation, are 
illustrated by the fact that it was not possible to observe the mode n = - 3 for the ring 
with x D / d  = 59.0 (figures 3-7) or even higher-order helix modes, which could be 
expected for the rings with the highest aspect ratio. 

3.2. Strouhal numbers 
From circular cylinder investigations it is known that the vortex shedding frequency f 
is a function of the shedding angle 0, i.e. the angle between the vortices and the body. 
Williamson (1989) showed that the Strouhal number S = f d / U  at a given Reynolds 
number is given, to a very good approximation, by 

(3.1) 

where So is the value for parallel shedding; the frequency decreases with increasing 
angle. 

The same behaviour is observed in the torus wake. The Strouhal-Reynolds number 
curves have been determined for all the modes of a given ring, and the result for the 
one with x D / d  = 59.0 is shown in figure 5. The downshift of the Strouhal curves for 
increasing wake winding numbers is clearly visible. Another important observation is 
the fact that the Strouhal curves for all the modes are continuous, and the wake 

s = so cos 8, 
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FIGURE 5. Strouhal number as function of Reynolds number and shedding mode for the ring with 
aspect ratio nD/d  = 59.0. Symbols as in figure 3. 

fluctuations are strictly periodic with a single frequency throughout the laminar 
regime. Phenomena such as spanwise cells of different frequencies, dislocations, or 
transitions between different oblique shedding angles do not occur (except at the limits 
of the stability domains, to be discussed further down). The continuity and smoothness 
also show that there is no lock-in effect from the interaction of flow and body 
oscillations. 

In order to compare with (3. l), the angle 8 is needed. For the ring, the discrete helix 
angles On, which are the shedding angles in the developed plane of the wake, are used. 
It is easily seen that they are given by 

(3.2) 
where A, is the streamwise wavelength of mode n. Equation (3.1) and the fact that the 
vortex convection speed is nearly independent of the shedding angle imply that the 
wavelengths satisfy the relation A, = A,/cos 8, (Williamson 1989). Together with (3.2) 
this leads to an expression which is independent of 8,: 

8, = tan-' In1 A,/xD,  

[ (7cD/d)2 I" '  d d  
hn-o 1-nZ (3.3) 

The wavelengths were measured by displacing the mobile LDA point in the 
streamwise direction and by determining the distance needed to reproduce a particular 
Lissajous figure from the LDA output and the signal from a fixed hot wire on an 
oscilloscope. The average of six wavelengths measured in an approximate interval 
5d < x < 40d was taken. The results can be seen in figure 6, with the lines showing 
the functions (3.3). hold is given by a fourth-order polynomial fit, which matches best 
all the values: hold= &miRei, with m, = 11.8, m, = -0.129, m, = 9 . 7 4 ~  lop4, 
m3 = -3.59 x and m4 = 5.32 x lo-'. The agreement between (3.3) and the 
measured values is good. 
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FIGURE 6. Streamwise wake wavelength as function of Reynolds number and shedding mode for the 
ring with aspect ratio nD/d  = 59.0. Symbols as in figure 3 .  The lines represent a least-squares fit of 
the family (3.3) to the measured data. 

I I 1 

- 

- -  

0 I I 160 I 200 
120 40 80 

FIGURE 7. Shedding angle in the developed plane of the wake as function of Reynolds number, 
calculated from the data in figure 6 using (3.2) and (3.4). Symbols as in figure 3 .  

- 

Figure 7 shows the shedding angles of the different modes as a function of Reynolds 
number, calculated from (3.2) for the helical modes and using the wavelength data 
shown in figure 6. For mode 0, because of the inclination of the vortex rings, the mean 
absolute value of the shedding angle in the developed wake plane was determined from 
phase measurements as in figure 3 and the formula 
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FIGURE 8. The Strouhal curve for parallel shedding behind the ring of aspect ratio nD/d  = 59.0, 
obtained from the original data in figure 5 using (3.1) and interpolations of the data in figure 7 for 
8. Symbols as in figure 3. 

K 

FIGURE 9. Critical Reynolds number for the onset of the BCnard-von Karman instability as function 
of the normalized body curvature normal to the flow. Present measurements on rings (0); straight 
cylinders for L / d +  co : Mathis et al. 1984 and Norberg 1994 (+); Schumm et al. 1994 (H). 

The helix angles are roughly proportional to the mode number n in the range of values 
observed, i.e. between 0" and 18". 

Finally, the data in figures 5 and 7 for S and 0 were used to calculate So, i.e. the 
Strouhal number of parallel shedding, from (3.1); the result is shown in figure 8. As in 
the case of straight cylinders (Williamson 1 9 8 8 ~ )  the transformed frequency laws of the 
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FIGURE 10. Comparison of the Strouhal curves for parallel shedding for rings of different aspect 
ratios: nD/d  = 99.5 (----), 59.0 (-), and 31.5 (-Ap). -, Straight cylinder. 

ring cylinder wake collapse to a single curve, despite the body curvature. This again 
shows that the effect of the curvature is small; its precise influence is examined in the 
following section. 

3 . 3 .  Curvature efects 
Before returning to the Strouhal curves, the influence of the transverse body curvature 
on the critical Reynolds number Re, for the transition from a stationary to an 
oscillating wake is analysed. The fact that this instability is characterized by a 
supercritical Hopf bifurcation allows a very accurate determination of the critical 
Reynolds number from measurements of the oscillation amplitude, as described in 
more detail in $5.2. In figure 9, Re, is plotted against the non-dimensional curvature 
K =  2d/D of the four rings. The curvature tends to increase the critical Reynolds 
number, and an approximately linear dependence is found. This linear variation 
can be extrapolated down to zero curvature, yielding Re,(K = 0) = 46.8, which is 
very close to the values for long straight cylinders found by Mathis et al. (1984) and 
Schumm et al. (1994), who both used related methods for the determination of Re,, 
and the one announced by Norberg (1994) for a cylinder with a very high aspect ratio 
(Lid = 2000). 

The procedure described in the last section has been used to determine the 
Strouhal-Reynolds number relationships for parallel shedding behind the rings. These 
relationships are very well approximated by the formula 

( 3  * 5 )  

The values of the coefficients A ,  B, and C are given in table 1, and three of the four 
Strouhal curves are plotted in figure 10, where they are compared to the straight 

So = A/Re+B+CRe. 
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FIGURE 11. The influence of body curvature on the vortex street configuration: schematic 
representation of the self-induced velocity of the curved vortices (a), and a smoke visualization (b) of 
the resulting asymmetry in the longitudinal vortex spacing. 

Cylinders 1 2 3 

d (mm) 2.01 1.01 1.01 
L (mm) 157 120 120 
L ld  78 119 119 
End configurations Angled (1 So) end Angled (12") end End plates, 0 20 mm, 

plates, 0 40 mm plates, 0 20 mm and end cylinders, 
0 2 mm, length 15 mm 

So = -3.810/Re+0.1904+ 1 . 2 2 0 ~  

TABLE 2. Dimensions, end configurations, and Strouhal curve for the circular cylinders. 
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circular cylinder result for parallel shedding, given by the bold line. The latter 
represents the collected data from three cylinders, which are described in more detail 
in table 2. Figure 10 shows that, at a given Reynolds number, the shedding frequency 
decreases with growing curvature and that near the instability threshold the differences 
between the curves seem to vanish. 

This decrease of the Strouhal number can be qualitatively understood by the 
following considerations. It is a well known fact that curved vortices, and in particular 
vortex rings, move in the surrounding fluid with a self-induced velocity perpendicular 
to the plane of curvature (see e.g. Saffmann 1992). For the vortex configuration in the 
ring wake, a part of which is shown schematically in figure 11 (a) for the case of parallel 
shedding, this means that the counter-rotating vortices have the tendency to pair, 
instead of showing a symmetrical spacing. This is actually observed in the experiments 
(see figure l l b  and the visualizations of Ehrhardt 1979 and Takamoto 1987). 
Furthermore, the velocity induced on each vortex by the other vortices of the vortex 
street is directed in the upstream direction, which is one of the reasons why the vortex 
convection speed U, is somewhat less than the free stream velocity. As can be seen from 
a simple geometrical consideration and the assumption of potential vortices, this 
velocity induced by the other vortices has a minimum for the symmetrical 
configuration, for given values of the vortex circulations. This means that any 
dissymmetric spacing results in a higher induced velocity upstream, i.e. a lower vortex 
convection speed U,, and consequently a lower wake frequency. It is also intuitively 
clear that this effect gets stronger with increasing curvature (higher self-induced 
velocity) and increasing vortex strength (all induced velocities higher), which makes it 
plausible why the frequency differences vanish at the threshold. 

Nevertheless, no simple expression giving the frequency shift as function of 
Reynolds number and curvature can be deduced from these ideas, owing to the 
difficulties in evaluating how close the counter-rotating vortices get to each other and 
how much the circulations of inner and outer vortices are modified by the curvature, 
a fact which had been noticed by Roshko (1953) already. Therefore this dependence is 
here determined from the experiments. 

From figure 10 and the fact that curvature effects are small (maximum deviation 
from the straight cylinder frequency of about 5 %) a linear variation in K is assumed 
in the following form: 

(3.6) 

where g = IAS,/AKI. The function g was calculated for all pairs of Strouhal curves 
among the results for the four rings (figure 12). When discarding the combinations for 
which the differences in curvature (and therefore frequency) are too small to give 
reliable results, a linear dependence on Reynolds number emerges for the remaining 
ones. Since it is desirable to have g independent of K, the following relation is proposed 
from the results shown in figure 12: 

S,(Re, K )  = S,(Re, 0) -g(Re) K, 

g(Re) = a[Re-Re,(K= O)]. (3.7) 

Equations (3.1), (3.6), and (3.7) then yield a global expression for the Strouhal number 
in the periodic regime of bluff body wakes with circular cross-section: 

S(Re, K, 0) = {S,(Re, K = 0) - a[Re - Re,(K = O)] K )  cos 8. (3.8) 

A least-squares fit (bold line in figure 12) gives a = 2.134 x With this, the function 
S,(Re, K = 0) can now be calculated from the measured sets of data via (3.6) and (3.7). 
The result is given in figure 13 and it confirms the validity of the assumptions made 
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FIGURE 12. The function g(Re) in (3.6), calculated from pairs of the experimentally determined 
Strouhal curves of four rings of different curvature. Symbols as in figure 14. ---, AK < 0.05, the 
differences in S and K for these curves are too small to deduce g reliably; -, AK > 0.05; -, 
linear fit K [Re-  Re,(K = O)] to the curves with AK > 0.05. 
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FIGURE 13. Universal Strouhal curve for parallel vortex shedding behind an ‘infinite’ circular cylinder, 
obtained by extrapolation of the ring wake results down to K = 0 using (3.6) and (3.7), and 
comparison with the straight cylinder case. Lines and symbols as in figure 10. 
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FIGURE 14. Eckhaus stability limits for rings of different aspect ratios. nD/d  = 99.5 (O), 76.2 (O), 
59.0 (+), and 31.5 (a). The lines represent the predictions of the Ginzburg-Landau model (equation 
5.12). 

above: the curves obtained for the three rings of figure 10 are practically identical. A 
least-squares fit of the form (3.5) of all the transformed data gives 

(3.9) 
Even if a more theoretical foundation for (3.6) and (3.7) is lacking, the fact that over 
500 data points for 23 different combinations (K,  n)  can be collapsed, via (3.8), onto the 
single curve (3.9), with an average percentage error of 0.24%, shows that it is 
nevertheless an excellent approximation. Equation (3.9) was obtained from an 
extrapolation of the results from experiments on curved bluff bodies without ends 
(rings) down to zero curvature. It can therfore be considered as an experimentally 
determined Strouhal curve for parallel vortex shedding behind straight cylinders of 
infinite length. 

A comparison with the present results from experiments on straight cylinders with 
ends, determined independently from the procedure described in this section, is also 
made in figure 13. The two curves are practically identical. Equation (3.9) also agrees 
extremely closely with the ' universal ' Strouhal-Reynolds number relationship defined 
previously for straight cylinders by Williamson ( 1  988 a)  and the parallel shedding data 
by Norberg (1994). Thus, within experimental uncertainty, the two methods of 
determining the Strouhal curve of truly two-dimensional vortex shedding, i.e. 
measurements on straight cylinders with special end configurations (including 
transformation of oblique shedding data) and the present method of extrapolating ring 
wake data to zero curvature, give the same result. 

S,,(Re,K= 0 )  = -3.669/Re+0.1861+ 1.432 x 10-4Re. 

3.4. Secondary instability of the helical shedding modes 
In this section the phenomena associated with the lower stability limit of the helical 
ring wake modes are described. The stability diagram in figure 4 shows that a given 
mode with n =k 0 is not stable below a certain Reynolds number Re,, which is an 
increasing function of In(. In figure 14 the stability limits of all the modes observed 
in the wake of four rings are collected. The same tendency is observed in all cases, 
and it gets stronger with decreasing aspect ratio. In 95.3 it is shown that this 



The flow behind rings 283 

100 120 140 
t (s) 

0 20 40 60 

FIGURE 15. Transition from mode - 2  to mode 0, after a change in Reynolds number from Re = 68.1 
to 66.7 at t = 0, for the ring with nD/d  = 59.0: time evolution of the difference A@ between the phases 
of the velocity fluctuation at two spanwise positions, chosen to have A@(t < 0) = ~ / 2  for reasons for 
signal processing. 

really is an effect linked to the aspect ratio (the spanwise confinement) and not to the 
curvature of the body. It is also shown that Ginzburg-Landau model predicts a relation 
(Re, - Re,) cc n2, which is plotted as solid lines in figure 14. 

When the ring wake is in a helical mode n and the Reynolds number is decreased 
from above to below the limit Re,, the initial mode becomes unstable, and a transition 
to a new, stable mode takes place. This transition happens in a very characteristic way, 
which was discovered by observing the Lissajous figures of the velocity signals from the 
two fixed hot wires at different spanwise positions. In the stable domain, these figures 
are also perfectly stable. When passing the stability limit, the Lissajous begins to 
oscillate slowly with an amplitude growing in time, until it breaks down in a short 
moment of chaotic motion before restabilizing in a new shape. This qualitative 
observation can be quantified by measuring the phase difference between two velocity 
signals as a function of time. Figure 15 shows a typical record of this phase difference 
after a step change in Reynolds number across the stability limit. Constant before the 
change, it begins to oscillate with an amplitude growing approximately exponentially, 
until the initial mode breaks down. No nonlinear saturation of the phase fluctuation 
amplitude was observed. The wake then reorganizes itself in a different mode with 
lower Jnl, which is still stable at the new Reynolds number, and the phase difference 
becomes constant again. It is interesting to note the time scales involved in this 
transition. For the case shown in figure 15, it takes about 2 minutes. With the shedding 
frequency being close to 15 Hz, this represents almost 2000 vortex shedding cycles. It 
is also clear that the duration of the free stream velocity transient for the Reynolds 
number change, which is of the order of 1 s, is completely negligible. 

The phase fluctuations A@ of figure 15 have the approximate form 

A 0  cc exp (a,  t )  sin [w, t +const.], (3.10) 

where the growth rate a, and the frequency w, of the fluctuations depend on the initial 
mode n. Both these quantities have been determined for a number of cases from time 
records as in figure 15. The dependence on Reynolds number of the growth rates, non- 
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FIGURE 16. Dimensionless growth rate of the Eckhaus instability of the helical vortex patterns, 
determined from measurements as in figure 15. Symbols as in figure 3. Lines represent the predictions 
of the Ginzburg-Landau model (equation (5.13)). 
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FIGURE 17. Normalized dimensionless frequency of the Eckhaus phase fluctuations. Symbols as in 
figure 14. The line represents the prediction of the Ginzburg-Landau model (equation (5.14)). 

dimensionalized with the viscous diffusion time, for three modes can be seen in figure 
16. Within the limits of experimental uncertainty, this dependence is linear, and the a, 
are proportional to the threshold deviation Re - Re,. Negative growth rates were 
found by letting the instability grow with Re < Re, and by switching to Re > Re, in 
time before the initial mode broke down. 

Figure 17 gives the non-dimensional phase fluctuation frequency for different rings, 
multiplied by the square of the aspect ratio, which is motivated in 95.3.  This quantity 
is then proportional to the wake mode number n. In other words, the lower the aspect 
ratio and the higher the winding number of the initial mode, the higher the frequency 
of the phase fluctuations associated with this secondary instability. During the 
transition process the velocity spectra exhibit sideband peaks at the combinations 
between shedding and phase fluctuation frequencies and the latter are of the same 
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order of magnitude as the differences between the shedding frequencies of the different 
modes at a given Reynolds number. These observations already suggest a mode 
interaction as the mechanism responsible for the destabilization of the oblique 
shedding patterns. This is confirmed in 55.3. 

Furthermore, the interpretation, in the framework of the Ginzburg-Landau wake 
model, of the phenomena described in this section identifies them as a well-known 
instability in dynamical systems: the modulational or Eckhaus instability of an array 
of coupled oscillators. Although it has been observed in closed flow systems, and 
particularly in thin-layer cellular convection (see e.g. Lowe & Gollub 1985; Kramer 
& Zimmerman 1985; Tuckermann & Barkley 1990), it has never been identified 
experimentally for open flows. 

4. Experimental results. 11. The transition range 
The phenomena described in this section occur at Reynolds numbers just above the 

periodic regime in the approximate interval 150 < Re < 350. 
For circular cylinders the periodic vortex street becomes unstable at a Reynolds 

number Re, of the order of 180. This value is only indicative. A surprisingly large range 
of quoted transition Reynolds numbers exists in the literature. Examples are Re, = 150 
(Roshko 1953; Tritton 1959), Re, = 165 (Norberg 1994), Re, = 178 (Williamson 1989), 
and Re, = 205 (Williamson 1995). The explanations proposed for this discrepancy 
include a varying free stream turbulence level (Bloor 1964), a difference between 
parallel and oblique vortex shedding (Hammache & Gharib 1989) and the influence of 
the cylinder end configuration (Williamson 1995). 

Figure 18 shows the values of Re, as a function of the wake mode for the different 
rings. In this configuration, the ‘end’ conditions are strictly the same for all the 
measurements, and the turbulence level can also be considered as being constant. For 
a given ring, a dissymmetry between left- and right-turning helical modes can be seen, 
and no clear evolution of, for example, the minimal transition Reynolds number with 
the ring aspect ratio can be deduced. This is probably due to the perturbations induced 
by the support wires and the sensitivity of the transition point to experimental 
conditions, as mentioned above. Nevertheless, a tendency for the higher-order helix 
modes to remain stable longer than the lower-order or vortex ring modes is observed, 
a tendency which seems to increase with curvature. The results in figure 18 for a 
configuration without end effects thus suggest that oblique shedding is more stable than 
parallel shedding. However, with the known sensitivity of the transition even to small 
perturbations, it cannot be ruled out that this behaviour is caused by the body 
curvature. 

When the Reynolds number is increased across the transition range, i.e. from Re, to 
about 350, different ring wake behaviours are observed. Just above the transition point 
the velocity fluctuations are no longer periodic, as for lower Re (figure 19a), but rather 
chaotic (figure 19b), showing large fluctuations in amplitude and frequency (see the 
spectra in figure 20). The frequent appearance of amplitude ‘holes’ (arrow in figure 
19b), which indicate the passage of vortex dislocations (Eisenlohr & Eckelmann 1989; 
Williamson 1989) is also observed in this Reynolds number region. Williamson (1992) 
investigated in detail the transition in the wake of straight cylinders with ends. With 
reference to his results, which show a very similar behaviour, the kind of vortex 
shedding described above is named mode A. 

For higher Reynolds numbers the wake fluctuations become more periodic again, 
i.e. the dominating frequency is much better defined, and few dislocations occur. The 
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FIGURE 18. Transition Reynolds number, i.e. upper stability limit, of the periodic shedding modes 
for four rings. Symbols as in figure 14, curvature increases from bottom to top. 

I 

FIGURE 19. Time traces of the velocity fluctuations for the different transition modes, measured at 
x = 7dand y = -2d. Ring of aspect ratio nD/d = 76.2.  (a) Re = 152 (periodic); (b) Re = 194 (type A); 
(c) Re = 412 (type B). 
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FIGURE 20. Spectra (long-time averages) of the velocity fluctuations. Ring of aspect ratio 

nD/d  = 59.0. 0, Periodic mode: A, mode A; 0, mode A*; 0, mode B. 

seemingly more irregular time trace of the velocity fluctuations shown in figure 19(c) 
is due to small-scale three-dimensional perturbations in the form of counter-rotating 
streamwise vortices, ‘ superimposed’ on the primary, more coherent vortex shedding. 
This corresponds to Williamson’s mode B. 

The two transition modes A and B are well characterized by their long-time velocity 
spectra, shown in figure 20 for the ring of aspect ratio 59.0. Whereas in the periodic 
regime one sharp peak (plus harmonics) is visible (Re = 158), the spectrum of mode A 
(Re = 183) shows a large band around a centre frequency f, which is not very well 
defined. The width of the peak is considerably smaller in mode B (Re = 353), but the 
‘background’ perturbation level, which manifests itself as a ‘white noise’ in the 
spectrum, continues to increase with Reynolds number. For intermediate Re a second 
frequency can be identified in the velocity spectra (figure 20, Re = 227) by a hump on 
the primary peak. It is visible in the range 200 < Re < 300 approximately, but its 
intensity never exceeds that at f,. 

The domains of these modes and the transitions between them are best illustrated by 
a plot of the Strouhal numbers associated with the different frequencies from the 
velocity spectra versus Reynolds number (figure 21 a). The transitions from the 
periodic modes to mode A are characterized by a discontinuity in the Strouhal curve, 
and the corresponding branches overlap in a certain interval. The wake behaviour in 
this zone is quite complicated. It is shown in figure 18 that the different periodic modes 
have different transition Reynolds numbers Re,. When increasing the Reynolds 
number in a periodic mode across its transition point, the wake either changes directly 
to another stable periodic mode or it switches abruptly to mode A, depending on the 
Reynolds number. In the latter case, and if there are other periodic modes which are 
still stable at this new Re, the wake returns to one of them after a random time interval 
and then stays in that mode indefinitely (the time spent in mode A can be extremely 
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FIGURE 21. Strouhal number in the transition range: (a) ring, aspect ratio nD/d  = 59.0, only the 
parallel shedding curve is shown in the laminar mode; (b) straight cylinder, aspect ratio L / d  = 78. 
-, dominating frequencies; ----, Williamson (1991). Symbols as in figures 3 and 20. 

long, of the order of tens of thousands of shedding cycles). This is true for most of the 
lower part of the overlap, even when it is reached from the higher side. There is 
however a small interval at the upper end of the overlap region where this has never 
been observed, i.e. there exists a slight hysteresis at this point. When the Reynolds 
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FIGURE 22. Comparison of the Strouhal curves of different rings and a cylinder in the transition range. 
Only the curves corresponding to the maximum in the spectrum are plotted. Lines as in figure 10. 

number is decreased from a higher value into the overlap region, the wake returns to 
a periodic mode only at some distance from the highest Re,. 

During the passage from mode A to mode B, the Strouhal-Reynolds number 
relationship is continuous, but a pronounced discontinuity in its slope occurs at Re x 
260. The evolution of the velocity spectra is also continuous and not marked by a 
sudden jump between modes as in the transition between the periodic modes and mode 
A. The branch associated with the weak third transition mode (A*) seems to align with 
the parallel periodic curve, which may be a sign that this intermittent mode is a 
remainder from the periodic regime. 

Figure 21 (b)  shows the corresponding Strouhal data for the straight circular cylinder 
with ends. The basic mode characteristics are the same as described above for the ring, 
but there are important differences in the transition between the modes. Concerning the 
first transition, it is also hysteretic, but over the entire overlap region. This means that 
mode transitions only occur at the ends of the Strouhal branches. Furthermore, the 
transition between modes A and B is characterized by a second discontinuity. After the 
appearance of mode A*, its energy increases until, at R e x  240, it exceeds that 
contained in mode A. The latter disappears completely at Re x 260. The subsequent 
passage from A* to B is again continuous in frequency. 

In figure 21 (b)  the results for the cylinder are compared to the data of Williamson 
(1988b), who discovered the two discontinuities, the hysteresis, and the shift of energy 
in the velocity spectra during the A-B transition (no other work concerning these 
points can be found in the literature so far). His visualizations also revealed the spatial 
structure of the modes A and B (Williamson 1991), and the description given above for 
the ring wake are, to a certain point, inspired by this work. 

Curvature effects in the transition region are illustrated in figure 22, where the 
Strouhal curves of three rings are compared to the straight cylinder result. The 
shedding frequencies are generally lower for the rings, as in the periodic regime, but no 
clear dependence could be determined. However, the effect of curvature seems to be 
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smaller in mode A. The behaviour at the transitions between the modes, described 
above for one particular ring, was principally the same for all the rings, i.e. up to the 
highest aspect ratios, as can be seen from the similar shape of the Strouhal curves in 
figure 22. It is believed that the differences between rings and cylinders in this flow 
regime are mainly due to the different end conditions, and that the intrinsic features of 
the wake of truly two-dimensional bodies are probably better represented by the ring 
wake results. This is further supported by a preliminary result of the present study 
involving a ring which had the same dimensions as the present one with aspect ratio 
99.5, but which presented a local defect (d 2 %  lower). This can be considered as some 
kind of perturbing boundary condition. In the transition range, the wake behind this 
ring behaved exactly like the wake of a straight circular cylinder with ends, as shown 
in figure 21 (b). 

The transition modes and especially their spatial structure can further be 
chartacterized quantitatively by the study of the spanwise correlation of the vortex 
shedding. The spanwise correlation coefficient C of the wake velocity fluctuations v at 
given downstream and transverse positions x and y is defined by 

Iv(z, t )  v(z + Az, t + .)I 
C(Az) = max 

-L<T<L [v2(z, t )  v2(z+Az, t)]liz’ 
2 f 0  2 f o  

where the overbar denotes the average over time t. The maximum over one principal 
shedding period is taken in order to account for a possible mean phase shift due to a 
local mean inclination of the vortex lines. 

This coefficient was measured for the ring with aspect ratio 59.0, and its evolution 
in the transition range is shown in figure 23(a) for a spanwise separation Az = 7c0/4, 
i.e. one quarter of the ring perimeter. In the periodic regime, the spanwise correlation 
is perfect, except very close to the transition point. It seems as if the transition 
announces itself by a very subtle perturbation of the vortex shedding, barely visible on 
the Lissajous figures. In mode A the correlation falls to very low values and reaches a 
minimum at Re = 260, which coincides with the discontinuity in the slope of the 
Strouhal curve in figure 21 (a). This is also the Reynolds number of a sharp maximum 
in the base suction coefficient, which has been measured in straight cylinder wakes by 
Williamson & Roshko (1990) and Norberg (1994). Also for straight cylinders, Gerrard 
(1978) found from visualizations in the transition range that what he called ‘fingers of 
dye’ occurred most frequently at Re z 250. These vortex loops have a strong 
decorrelating effect and the minimum of the spanwise correlation in figure 23 (a)  may 
therefore be related to this observation. 

For the Reynolds number of this minimum, the entire correlation function C(Az) is 
given in figure 23 (b). It shows an approximately exponential decay, but a discontinuity 
in the slope appears repeatably at a spanwise separation of about three body diameters. 
This may be related to the observation of Williamson (1992) that the average spanwise 
wavelength of the vortex deformation in mode A, determined from visualizations, has 
approximately the same value. When the correlation length ( is defined as the area 
under the curve C(Az), one has for the result in figure 23(b) (=r2 C(Az) dAz x 6.3d, 

which is about one tenth of the ring perimeter. 
Above Re = 260 the spanwise correlation increases rapidly until it reaches a 

maximum of 0.7 near Re = 350, from whereon it slowly decreases again. This 
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FIGURE 23. Correlation coefficient (see (4.1)) of the velocity fluctuations at two spanwise positions, 
z and z+Az, for the ring with nD/d  = 59.0: (a) as a function of Re, Az = nD/4, i.e. one quarter of 
the perimeter; (b) as a function of Az at Re = 260, i.e. at the minimum of the curve in (a). In (b), the 
symbols stand for different values of z and lines are exponential fits. 

illustrates well the transition to a relatively coherent vortex shedding in mode B and the 
subsequent slow increase in the small-scale perturbations in the form of streamwise 
vortices. 

The beginning of the transition to turbulence in the separated shear layers through 
a Kelvin-Helmholtz-type instability is generally found to occur only at Re = 1000 and 
thus has no influence on the phenomena described in this section. 

5. The Ginzburg-Landau model. I. The periodic regime 
In the two preceding sections a number of experimental results concerning bluff 

body wakes with particularly clean ‘boundary’ conditions have been presented. In this 
and the following section it is shown that a surprisingly large part of the observed 
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phenomena can be understood using a simple dynamical model. This is all the more 
interesting and useful as exact or approximate analytical approaches for the vortex 
shedding and transition regime either do not exist or are very limited, and the insight 
gained by numerical simulations is not always obvious for this apparently complicated 
flow problem. The problem of deriving the Ginzburg-Landau equation, used to 
represent bluff body wakes, from the fundamental hydrodynamic equations governing 
this flow seems to be quite a difficult one, and no conclusive result can be found in the 
literature so far. This question will not be answered in this paper either, so that, for the 
moment, the Ginzburg-Landau equation keeps its status of a model equation, with the 
most striking argument for its validity being the number of experimental facts that it 
can account for. 

5.1. The Ginzburg-Landau equation and its solutions 
Mathis et al. (1984) and Provansal et al. (1987) showed that a two-dimensional cylinder 
wake could be modelled by a (zero-dimensional) nonlinear Stuart-Landau oscillator. 
In the Ginzburg-Landau (GL) model three-dimensional effects are taken into account 
by considering a diffusively coupled one-dimensional chain of these oscillators, 
distributed along the spanwise direction of the body. This continuous chain of 
oscillators represents the near-wake formation region as a whole, i.e. it reduces the 
three-dimensional physical problem to a one-dimensional one. The point is that the 
dynamical features of the two turn out to be very similar. 

The equation of motion for this system is the one-dimensional complex 
Ginzburg-Landau equation : 

aA a2A 
- = a(l+ic,)A+,u(l+ic,),-l(l +ic,)IA12A. 
at az 

The real part of the complex amplitude A is proportional to the velocity fluctuations 
measured in the wake, and cr, ,u, 1, co, c,, and c, are the (real) model parameters, which 
have to be determined from experiments. Equation (5.1) contains terms for a linear 
amplification, a diffusive coupling along the spanwise coordinate z ,  and a nonlinear 
saturation. 

The parameters used here to model the ring wake are the following: 

V 
cr = k-(Re-Re,), ,u = lOv,  (5.2a, b) 

d 2  

2n Roo 
k Re - Re, 

lv = O(10-l) in the near wake, co = - + c2, (5.2c, d )  

C, = -0.65, C, = - 3.0. ( 5 . k  f 1 
The linear growth rate cr (with k = 0.2) and the value of c, are known from circular 
cylinder studies (Provansal et al. 1987; Albarede & Monkewitz 1992; Sreenivasan et al. 
1986; Schumm et al. 1994). The value for the diffusive coupling constant ,u was found 
from the exploitation of the present ring wake results (see $5.2 and Leweke & 
Provansal1994b). Albarede & Monkewitz (1992) announced a value three times higher 
for straight cylinder wakes with end effects, but this is believed to be due to a difficulty 
in the interpretation of the effective cylinder length to be used in the GL model. This 
point is discussed further by Albarede & Provansal (1995). The nonlinear coefficient 
1 > 0 is linked to the oscillation amplitude (see (5.4a) below) and therefore varies in 
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FIGURE 24. Spatio-temporal plot of the real part of the GL amplitude A (positive values in black) 
showing the development of a helical pattern (n = 1) from low-amplitude random noise. Numerical 
simulation with c1 = - 0 . 6 5 , ~ ~  = -3.0, and the dimensionless domain length L, = 25 (see A 2b) ,  
which corresponds to a ring with nD/d  = 59 at Re = 59. 

space. It is, however, independent of the Reynolds number. In the expression for co (see 
next section), Roo =fo d 2 / u  = So Re is the Roshko number for parallel vortex shedding. 
The value for c1 was found to match best all the experimental data, and it is compatible 
with the results of Albarede & Monkewitz (1992). The relations (5.2) were found to be 
valid for Re, < Re < 100 approximately, which is a surprisingly large interval for a 
model which was a priori considered as a development around the threshold Re,. 

In an infinite domain, and for positive values of (T, (5.1) has periodic plane wave 
solutions 

A ,  = MQ exp [i(QQ t+ Qz)], (5.3) 

where the real amplitude M ,  and the frequency 0, are given by 

(5 .44  

52, = (T(c~ - c,) - P ( c ~  - c,) Qz.  (5.4b) 

They both depend on the spanwise wavenumber Q. The cases Q = 0 and Q + 0 
correspond to parallel and oblique vortex shedding, respectively. Because of the 
periodic boundary conditions which apply to the ring geometry, i.e. A(z = n D ,  t )  = 
A(z = 0, t),  Q can only take the discrete values discussed in $3.1 : Q = Q, = 2 n / D  (n = 
0,1,2,3) .  It may be emphasized at this point that the periodic boundary conditions are 
incorporated in the model without problem. For the modelling of wakes behind 
straight cylinders with ends, the boundary condition A = 0 was chosen (Albarkde et al. 
1990) to express the fact that the oscillation has to vanish at the spanwise boundaries. 
This is only a poor representation of the complicated phenomena in this region, which 
made the quantitative comparison with experimental data quite difficult (see e.g. 
Albarede & Provansal 1995). In the present application of the GL model to ring wakes, 
curvature effects are neglected but, as shown in 0 3.3, they are only responsible for small 
corrections and do not notably modify the dynamical wake behaviour. 

Figure 24 shows the result of a numerical simulation of (5.1) with periodic boundary 
conditions in the form of a spatio-temporal plot (a description of the algorithm used 
for these calculations can be found in Albarkde 1991). Starting from random noise, a 
helical mode with n = 1 develops. Knowing that the downstream part of bluff body 
wakes is mainly made up of convected structures created in the near wake, the 
transformation t = - x / U ,  allows us to consider this plot as a visualization of the 
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FIGURE 25.  Square of the amplitude of the streamwise velocity fluctuation measured at x / d  = 7 
and y / d  = - 2 .  Ring aspect ratio nD/d  = 59.0, shedding mode n = 0. 

wake, with the body on the right side and flow from right to left. This is not true in all 
situations, as will be seen in 96 in the case of dislocations. In experiments these 
structures show a significant downstream evolution, which is not modelled by the 
present spanwise GL equation. 

5.2. Amplitudes and frequencies 
Equations (5.3) and (5.2a), together with the expression for the discrete spanwise 
wavenumbers Q, lead to the following relations concerning the amplitude of the 
velocity oscillations : 

(M,, d/v)2 cc (Re-  Re,), (5.5) 

M5, - I u / v  4n2 n2* 

z-1- k(Re - Re,) (nD/d)2  

Here and in the following, the notations M ,  = M,,, . . . etc. are used. Figure 25 shows 
the square of fluctuation amplitude u i  of the streamwise velocity component measured 
at x = 7d and y = -2d in the wake of the nD/d  = 59.0 ring. Relation (5.5) is very 
closely verified up to Re = 100 For higher values the beginning of some kind of 
saturation is visible. From the point of view of the model it is not clear if this is due 
to a variation of 1 or if ( 5 . 2 ~ )  is no longer valid at high Reynolds numbers. Another 
reason may be .that, according to the theoretical analysis of wake flows in terms of 
global oscillation modes (Goujon-Durand, Jenffer & Wesfreid 1994), the linear 
behaviour in (5.3) should not necessarily be observed for amplitudes measured at the 
same point in the wake for all Re, but rather for a ‘norm’ of the oscillating flow, given 
for example by the maximum of the amplitude fluctuation. 

The linear uL2-Re relationship near the threshold allows a very accurate and 
unambiguous determination of the critical Reynolds number Re, of the BCnard- 
von Karman instability by extrapolation to zero amplitude. In the ‘older’ literature, 
the reported values of Re,, often deduced from flow visualizations, were sometimes 
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FIGURE 26. Relative fluctuation energy as function of periodic shedding mode and Reynolds 
number. Ring with nD/d  = 59.0. In1 = 0 (a), 1 (O), 2 (A), and 3 (0). 

significantly lower (see e.g. Gerrard 1978 or the review by Coutanceau & Defaye 1991), 
probably because of a convective instability developing downstream. At present, values 
of Re, around 47 are generally recognized for circular cylinders (see figure 13). 

A test of (5.6) is shown in figure 26. The measured oscillation energies of the different 
modes were divided by a smooth fit of the parallel shedding values. Despite the scatter 
of the data, a distinct change is visible at Re FZ 100. Above this value the relative 
differences in the mode amplitudes are almost constant and the dependence on n2, 
predicted by (5.6), seems to be verified. The results in figure 26 lead to the value for the 
diffusive coefficient given in (5.2b) for Re < 100 (Leweke & Provansal 1994b). 

The origin of the differences between the ranges below and above Re = 100, 
observed in figures 25 and 26, is not clear. The same Reynolds number is sometimes 
cited as the end of the range where diffusion of vorticity plays the primary role in the 
vortex formation and the beginning of a regime where vorticity convection becomes 
dominant (Gerrard 1978; Coutanceau & Defaye 1991). With the Strouhal curves 
showing no signs of a change in flow behaviour, the result in figure 26 remains the only 
quantitative support for this idea. 

The frequencies of the velocity fluctuations are now known very accurately in the 
laminar regime and the 'cos0 law' (3.1) has been shown to be valid for straight 
cylinders and also rings, as described in $3.2. It is therefore necessary to relate the 
Ginzburg-Landau model to (3.1). For this it is more convenient to use the Roshko 
number Ro = f d2 /v  = S Re, for which the same cos 0 law also holds. Two relations for 
the frequencies can be derived from ( 5 . 2 ~ )  and (5 .4b):  

V 1 
d 2  2n: 

RO - =fa = - g(c0 - c2), (5.7) 

RO = R o ~ - - ( c ~ - c ~ ) - .  P (QdY 
V 2n: 
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The subscript 0 denotes parallel shedding (except in c,). Equation (5.7) immediately 
leads to the expression (5.2d) for co. The spanwise wavenumber Q is related to the shed- 
ding angle 0 via the streamwise wavelength h of the vortex street: Q = (27c/h,) sin 0 
(Albarede 1991). For (5.8) to be identical with the relation Ro = Ro,cos8, the 
following condition has to be fulfilled : 

The last approximation is justified because the maximum observed values of 0 lie 
around 20". The combination of parameters on the left-hand side of (5.9) has been 
determined from frequency measurements in the wake of a ring using (5.8) (Leweke & 
Provansal 1994b). A comparison with the right-hand side of (5.9), calculated with the 
straight cylinder data of Williamson (1989) for A, and Roo, shows a good agreement, 
considering that the results come from completely different experiments. 

The cos0 law seems to be more straightforward than the relation (5.8) from the 
Ginzburg-Landau model, involving a number of a priori unknown parameters with a 
complicated Reynolds number dependence, and the stability arguments and geo- 
metrical considerations invoked by Williamson (1989) and, above all, the excellent 
agreement with experiments leave little doubt about its validity, even if a rigorous 
theoretical demonstration is still lacking. However, the Ginzburg-Landau model, itself 
being purely phenomenological, is no less capable of accounting for the observed 
dependence of frequency on shedding angle (or, better, spanwise wavenumber), and it 
can describe a great number of other dynamical features, as shown throughout this 
section. 

5.3. The Eckhaus instability 
The plane wave solutions (5.3) of the Ginzburg-Landau equation (5.1) can become 
unstable under certain circumstances. In the present one-dimensional complex case, 
two major instabilities can occur. One is linked to a change in the parameters c, and 
c z ;  it is treated in $6. The other one can occur at constant values of these parameters 
and depends on the spanwise wavenumber Q of the plane waves: the modulational or 
Eckhaus instability. The instability mechanism is a resonant amplification of sideband 
disturbances by nonlinear interaction with the initial mode. A very good account on 
this is given by Stuart & DiPrima (1978). 

For the present case of the shedding instability in the ring wakes shown in $3.4, the 
analytic treatment of Kuramoto (1984) and Janiaud et al. (1992) is followed. Perturbed 
plane wave solutions (5.3) with discrete wavenumbers of the form 

4 t ,  z) = M,V+ a(t ,  z)l exp NQ, t + Q, z + #(I, 411 (5.10) 

are considered and solutions of the linearized equations for the amplitude and phase 
perturbations a and # are sought in the form 

(5.1 1) 

where q is the spanwise wavenumber and A ,  = a, + iw, the complex growth rate of the 
perturbations (a, is the real amplification rate, w, the frequency of the fluctuations). 
Details of the calculations are given in the Appendix. The main result is that oblique 
shedding becomes unstable for wavenumbers (i.e. shedding angles) above a limiting 
value which is an increasing function of Reynolds number, which means that a mode 
with a given Q, becomes unstable below a limiting Reynolds number Re,. When 
passing this limit, perturbations with wavenumbers q close (but not equal) to zero are 

a(t, z) = a, exp ( A ,  t+ iqz), #(t ,  z )  = #, exp ( A ,  t + iqz), 
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FIGURE 27. Numerical simulation of the Eckhaus instability of mode n = 2 .  The parameters are 
the same as in figure 24, which corresponds to a threshold deviation Re- Re, = -9 for a ring with 
x D / d  = 59.0. This is why the transition is very fast. 

first amplified and lead to a long-wavelength modulation of the initial spanwise 
pattern. Furthermore, for q+O the perturbation becomes a pure phase mode 
(Kuramoto 1984). For the bluff body wakes this translates into a growing waviness of 
the wake vortices, as illustrated by the numerical simulation shown in figure 27 (see 
also Leweke et al. 1993b). 

The quantitative result for the stability limits of the ring wake modes is 

Re, = Re,+ (5.12) 

i.e. their distance to the threshold Re, of the primary instability is proportional to the 
square of the mode number and inversely proportional to the square of the aspect 
ratio. This result is plotted as solid lines in figures 4 and 14 for the values of the 
parameters given in (5.2) and the measured critical Reynolds numbers and aspect ratios 
in table 1. The dashed line in figure 4 represents the marginal stability limit of the plane 
waves, i.e. for a given Reynolds number it marks the winding number (proportional to 
the spanwise wavenumber), for which the amplitude (5 .4~)  of the (unstable) oscillation 
falls to zero. In expression (5.12) finite-size effects due to the periodic (and not infinite) 
domain are neglected. These effects slightly shift the instability boundary to lower 
Reynolds numbers. A calculation analogous to the one by Tuckerman & Barkley 
(1990) for a GL equation with real coefficients shows that in the present case these 
effects are smaller than the experimental uncertainty: a shift of about 1 in Reynolds 
number for the ring with aspect ratio 59.0, for example (Leweke 1994). 

For the quantitative evaluation of the amplification rates a, and frequencies w ,  of 
the Eckhaus instability, however, the finite spanwise size of the body is important, 
because they both depend on the perturbation wavenumber q (see the Appendix). Just 
like the initial plane waves, the perturbations can also only have discrete, and therefore 
finite wavenumbers q m  = 2m/D. The smallest value not equal to zero is ql ,  which leads 
to the following expressions : 

a d 2  (1 + c1 c,), k 
= - 2(1 +ci) 2’ (5.13) 

(5.14) 
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FIGURE 28. Qualitative shape of the stability function W,, as function of the perturbation 
wavenumber, for a given helical mode. For small threshold deviations only the first discrete 
perturbation mode is unstable (0). For greater ARe (w) higher modes become unstable and 
dominate because of their higher amplification rate. 

Since the growth rate is always zero at the instability limit (the definition of the latter), 
only its derivative (5.13) is of interest. It depends on the mode number, but not on the 
aspect ratio. The perturbation frequency is linear in mode number and inversely 
proportional to the square of the aspect ratio, but does not depend on Reynolds 
number. The agreement with the experimental data from the ring with z D / d  = 59.0 in 
figures 16 and 17, always using the same model parameters (5.2), is very good. 

The predictions of the Ginzburg-Landau model go even further in detail concerning 
this secondary instability in ring wakes. In the Appendix a stability function W’,(q) is 
defined, which qualitatively represents the growth rate of perturbations with 
wavenumber q. Figure 28 shows this function for several Reynolds numbers around a 
given Eckhaus limit Re,. For Re > Re, all perturbations are damped, except the one 
with q = 0, which is always marginally stable. As soon as Re < Re, there exists an 
interval of unstable q around q = 0, with the size of this interval increasing with the 
threshold deviation Re, - Re. First, this illustrates the finite-size effect on the stability 
limit. The initial solution remains stable until the unstable q-interval includes the first 
possible perturbation wavenumber ql. In an infinite domain, infinitesimal q are 
possible, and the initial mode is destabilized as soon as Re < Re,. But what is more 
interesting is the fact that, if the Reynolds number is decreased sufficiently far below 
the limit Re,, the second discrete perturbation mode q2 becomes unstable, and with a 
much higher growth rate than the first. If the transient of the Reynolds number change 
is sufficiently short this second mode should then ‘win’ over the first, or at least be 
clearly visible. In the Appendix it is shown that the perturbation frequency (the 
imaginary part of expression (A 8)) is proportional to the perturbation wavenumber, 
which gives a simple means to detect the nature of the most unstable perturbation. 
Figure 29 shows two experimental records of the phase fluctuations during the Eckhaus 
destabilization of mode 3 in the z D / d  = 76.2 ring wake. The first in figure 29(a) was 
obtained for a Reynolds number just below the instability limit and the frequency is the 
one predicted by (5.14). In figure 29(b) the distance to Re, is much greater and the basic 
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FIGURE 29. Development of the Eckhaus instability of mode n = + 3 (compare figure 1 3 ,  after step 
changes in Re: (a)  Re-Re, = - 1.5, (b) Re- Re, = -5 .  Ring with nD/d = 76.2. In (b) the final 
Reynolds number is much further away from the threshold than in (a), which results in a phase 
fluctuation frequency almost twice as high as in (a). This behaviour is predicted by the GL model. 

frequency of the fluctuations is almost twice as high as before, which confirms the 
prediction of the GL model. 

With the results shown in this section, it may be concluded that the Ginzburg- 
Landau model accounts qualitatively and quantitatively for all relevant experimental 
results concerning the secondary instability described in 5 3.4 and clearly identifies it 
as the Eckhaus instability of the spanwise pattern of vortex shedding. This must not be 
confused with a modulational instability of the streamwise vortex street pattern. The 
vortex street is more or less only a time recording of the near-wake dynamics and 
the downstream coordinate does not appear in the present model. Two-dimensional 
GL models including this direction have been studied numerically by Park & Redekopp 
(1992) and analytically by Chiffaudel (1992), who evokes a similar instability. 

6. The Ginzburg-Landau model. 11. The transition range 
The results from the Ginzburg-Landau model presented in this section are more 

qualitative and less quantitative than the previous ones concerning the periodic regime. 
As shown above, the parameters of the model turn out to be more or less constant in 
the range 50 < Re < 100 (except c, of course), and their values can be determined with 
sufficient accuracy. One way to account for the deviations from this behaviour for 
higher Reynolds numbers is to allow for variable model parameters in equation (5.1). 
This, of course, requires that the model still has some kind of validity in this domain. 
The results presented in this section seem to confirm this assumption. 

Equation (A 1) in the Appendix shows that the dynamical properties of the GL 
amplitude A are mainly determined by the parameters c1 and c,, c, represents a simple 
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FIGURE 30. Parameter space for the Ginzburg-Landau model (following Shraiman et al. 1992) and 
trajectory (. . . . .) for the transition regime according to (6.1). The symbols show the combinations 
used to obtain figures 31 (a) (0) and 31 (b)  (a). 

frequency shift and the remaining coefficients are just scaling factors. Here, the 
following variations of c1 and c, are proposed for Re > 100: 

c, = c,+2.7, cz = -4.1+0.011 Re. (6.1) 

Actually, very little is known about the real values in this range and (6.1) was mainly 
chosen for its simplicity. However, it is sufficient to illustrate the main qualitative 
results, and the true evolution of these parameters is believed to be not fundamentally 
different from the one given here. 

Figure 30 shows the trajectory described by (6.1) in the (cl, c,)-plane. At Re = 100 
it starts off at the approximate value found for lower Reynolds numbers and then 
traverses a region where all periodic solutions (5.3) are unstable (see the Appendix): the 
Benjamin-Feir unstable domain with 1 + c, c, < 0, above the line marked BF in figure 
30. Recent numerical simulations performed by Shraiman et al. (1992) showed that this 
region is essentially divided into two parts corresponding to two different dynamical 
behaviours of the solutions of the Ginzburg-Landau equation: ‘defect chaos’ and 
‘phase turbulence’. The former is characterized by space-time dislocations, i.e. local 
phase jumps at low amplitude, and a small correlation length; the latter by the absence 
of dislocations and a much higher spatial correlation. This is illustrated by the 
spatio-temporal plots in figure 3 1 for the parameter combinations marked in figure 30. 
These two regimes are here associated with the vortex shedding modes A and B of the 
transition range, discussed in $4. 

The plots in figure 3 1 , however, can no longer be interpreted as a visualization of the 
real wake, as in the laminar regime. As shown by Williamson (1992), vortex 
dislocations in the transition range are complicated large-scale structures which spread 
in the spanwise direction as they travel downstream. Figure 3 1 (a)  shows a time record 
of the near-wake spatial structure, i.e. of the beginning of the large-scale structure. It 
has to be remembered that the real wake is made up of vortical structures. Far from 
the body their evolution is governed by mechanisms, such as Biot-Savart induction, 
that are completely different from the near-wake dynamics modelled by the 
Ginzburg-Landau equation. Another ‘ downstream ’ effect in this Reynolds number 
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FIGURE 3 1. Spatio-temporal plots of the two characteristic behaviours in the Benjamin-Feir unstable 
domain. L, = 100. (a) Defect chaos, c, = 0.7, c2 = -2.0; (b) phase turbulence, c1 = 1 . 8 , ~ ~  = -0.9. 
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FIGURE 32. Time spectra of the GL amplitude A ,  obtained from numerical simulations of (5.1) 
with parameters ( 5 . 2 0 4 )  and (6.1), and L, = 100. Symbols as in figure 20. 
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FIGURE 33. S-Re relationship resulting from the GL model. For a given c2, the Reynolds number was 
calculated from (6.1), and the Strouhal number from (6.2). Symbols as in figure 20. The dashed line 
marks the frequency of the parallel plane wave solutions, which become unstable beyond the 
Benjamin-Feir instability limit. 

range is the transition to turbulent motion observed some distance from the body and 
which is initiated by the three-dimensional near-wake perturbations and their 
downstream evolution. 

The qualitative comparisons between the Ginzburg-Landau model and real bluff 
body wakes in the transition regime can be made more quantitative by determining the 
Strouhal-Reynolds number relationship for the GL model. This was done using 
numerical simulations of the GL equation in non-dimensional form (A 1) and the 
coefficients (6.1), but without the frequency shift in (A 2c). For the coefficient c, of the 
linear oscillation frequency, expression (5.2 d )  from the laminar range was continued 
across the transition regime with a linear variation of Roo with Reynolds number, close 
to typical bluff body results. As shown in figure 32 the time spectra of the calculated 
solution A are very similar to the experimentally determined velocity spectra in figure 
20. The Strouhal number was calculated from the dimensionless frequency f’ in the 
same way as illustrated in figure 20 and using the relation 

k Re-Re, 
27c Re ’ 

S = - - f ’  

which results from (A 2d) ,  (5.2a) and S = ( fd2 /v ) /Re .  
The result is shown in figure 33 for a dimensionless domain length L, = 100 (see 

(A 2b)) and periodic boundary conditions. It shows a strong resemblance to the 
experimental result for the ring wake shown in figure 2(a). In the periodic domain, the 
oscillation frequency has the value of the plane wave solution given by (5.7) (dashed 
line). When the Benjamin-Feir stability limit is passed at Re z 180 and the region of 
defect chaos is entered, the principal frequency drops to lower values. Shraiman et al. 
showed that when the limit is passed in the other direction, by varying the parameters 
in a single run, the defect chaos mode persists in the Benjamin-Feir stable range, or is 
at least a long-lived transient. This is very close to the hysteretic behaviour of the ring 
or straight cylinder wakes described in 94. The difference between observed and plane 
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FIGURE 34. Coefficient of spatial correlation, obtained from simulations of the Ginzburg-Landau 
model, for the fluctuations at points separated by one quarter of the domain size L,. 

wave frequencies then reduces as the domain of phase turbulence is approached, and 
no discontinuity occurs during the transition to this mode. The discontinuity in the 
slope of the Strouhal curve is less pronounced than in the experiments. A third 
transition mode, which corresponds to mode A* in the ring wake, also appears, with a 
weak side peak in the spectra at frequencies higher than the plane wave frequency 
(figure 32, c, = - 1.7). 

Another comparison is possible between the spatial correlation functions. The 
correlation coefficient C defined by (4.1) was calculated for Az = L,/4 from the 
numerical results; it is shown in figure 34. The sharp drop from the perfect correlation 
in the periodic mode to very small values in the defect chaos mode (A) and the 
subsequent fast increase during the transition to the phase turbulence mode (B) are 
very similar to the results seen in figure 23. However, the correlation coefficient climbs 
to much higher values in the model than in the real wake, and if the trajectory in 
parameter space in figure 30 and (6.1) was extended to higher Reynolds numbers it is 
clear that C would reach the value 1 again when the Benjamin-Feir unstable range is 
left. In real bluff body wakes it is the increase of the small-scale perturbations in the 
form of streamwise vortices which makes the spanwise correlation (as in figure 23) 
decrease again for higher Reynolds numbers. These streamwise vortices of mode B are 
believed to be the result of a centrifugal instability of the Karman vortices in the 
near-wake formation region (see e.g. Konig 1993 and Zhang, Noack & Eckelmann 
1994). Such a mechanism can obviously not be reproduced by the simple 
Ginzburg-Landau model, which explains the differences between model and 
experiment concerning the spanwise correlation, and also the ‘background ’ noise level 
in the spectra, in this Reynolds number range. 

Considering the very simplified choice of the GL parameter variation (6. l), the 
agreement between model and reality, concerning oscillation spectra, frequencies, and 
correlation functions, is very good. Experimental phenomena, such as the hysteresis at 
the transition between periodic mode and defect chaos, widening of the peaks in the 
oscillation spectra, ‘double peaks ’ in the spectra, or discontinuities in the Strouhal 
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curves, appear naturally in the Ginzburg-Landau model as consequences of the 
Benjamin-Feir instability, and this for a completely smooth variation of the model 
parameters. 

7. Discussion and conclusions 
In this study, precise experimental results concerning the wakes behind bluff rings at 

low Reynolds numbers were obtained. These are compared to the predictions of a 
simple dynamical wake model involving a Ginzburg-Landau equation. The com- 
bination of the two give a number of new insights into the behaviour of bluff body 
wakes in general. 

First of all, the validity of the phenomenological approach consisting of the 
interpretation of bluff body wakes in terms of amplitude equations is further 
confirmed. For this kind of open flow, this concept was first applied to straight circular 
cylinder configurations, but the comparison with experiments remained rather 
qualitative, especially concerning three-dimensional phenomena. This is not too 
surprising because an important part of these flows, the one close to the body ends, 
cannot be accurately incorporated in such a simple model. In the present ring 
geometry, end effects are absent and the Ginzburg-Landau model can become fully 
operational. The good quantitative agreement between experimental and analytical 
results presented in this paper reflects this. The body curvature, which is present in the 
experiments, but does not appear in the model, is shown to add only small quantitative 
changes. 

Furthermore, the present model turns out to be more than just a truncated 
development of the Navier-Stokes equations near the onset of the BCnard- 
von Karman instability. With constant coefficients it is valid up to Re = 100, and 
when allowing for a variation of the parameters it describes the wake dynamics up 
to Reynolds numbers of the order of 300 or more. 

The ring wake results and the Ginzburg-Landau model applied to a bluff body of 
infinite length can also give answers to the question of which phenomena are intrinsic 
to the wakes behind such idealized bodies and which are linked to specific end 
configurations. One of these phenomena is oblique vortex shedding. Although it is 
influenced by end effects, it is nevertheless an intrinsic feature of the infinite-cylinder 
problem. As shown by the solutions (5.3), a whole band of spanwise wavenumbers, i.e. 
oblique shedding angles, centred around Q = 0 is possible, limited only by the Eckhaus 
instability. In a periodic domain like the ring wake, obviously only discrete values are 
allowed. In recent experimental studies, Konig, Noack & Eckelmann (1993) and Brede 
et al. (1994) also reported on discrete shedding modes in the wake of a straight cylinder, 
which seems to be in contradiction with the expected continuum of shedding angles. It 
is believed, however, that this discreteness is the result of an interaction between the 
main body of the wake and the lower-frequency end cells. When there are no such cells, 
as e.g. in the experiments of Miller & Williamson (1994) or below Re z 65 in Konig 
et al. (1993), a continuum of angles is observed. This suggests that discrete shedding 
modes in cylinder wakes are a product of a particular set of end conditions (which are 
also the most commonly used), and not an intrinsic feature of the wakes behind 
infinitely long cylinders. The same applies to related phenomena, such as additional 
spanwise cells of different frequencies, quasi-periodic velocity signals, discontinuities in 
the periodic shedding frequency, and transitions between different shedding angles. 
For infinite or ring geometries, the only stable asymptotic solutions in the periodic 
regime are the plane waves described by (5.3); everything else is due to end effects. 
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As a consequence of the absence of the predominating influence of the ends, new, 
more subtle phenomena can be observed in the ring wake. This is the case for the 
Eckhaus instability described in $3.4. The ring geometry allows for the first time the 
quantitative study of this secondary instability in an open flow system. For this the 
Ginzburg-Landau model is of great help in clearly identifying the observed 
phenomena, without which they would have remained somewhat mysterious. Since the 
curvature of the rings does not appear in the model, the Eckhaus instability should also 
occur in the wake of straight circular cylinders. It is probably at the origin of the 
transition between different oblique shedding modes and the formation of spanwise 
cells of different shedding frequencies described by Williamson (1 988 a)  and Konig 
et al. (1990). These phenomena are associated with discontinuities in the Strouhal 
curve and they are believed to occur whenever the oblique angle induced by the end 
configuration exceeds the Eckhaus limit. As discussed in 95.3 and in more detail in 
Leweke (1994), this limit is an increasing function of Reynolds number, approximately 
proportional to (Re-Re,)l’’, which agrees well with the maximum values of the 
shedding angles observed by Konig et al. (1993, figure 1). 

Another set of results concerns the transition range. Once it is established that 
laminar bluff body wakes behave like a one-dimensional chain of diffusively coupled 
oscillators, whose dynamics are described by a Ginzburg-Landau equation, and the 
parameters of this equation are approximately known, it is only a small step to identify 
the instability of the periodic wake as the Benjamin-Feir instability, which is a well- 
known feature of this equation. A comparison with experiments, however, is only 
possible by eliminating the end effects, which cannot be correctly modelled, by the use 
of the ring geometry. In $4 these effects are shown to cause important qualitative 
changes in the transition dynamics, especially a second Strouhal discontinuity, not 
found in the ring wakes. The intriguing behaviour of the experimental spectra in figure 
20 and of the Strouhal curve in figure 21(a) is then qualitatively explained by the 
passage of the Ginzburg-Landau parameters through the Benjamin-Feir unstable 
domain, even if the exact variation of these parameters with Reynolds number and 
their precise physical interpretation are not known for the moment. The good 
agreement between ring wake and model also shows that the difference in the transition 
behaviour between cylinders and rings is not due to the body curvature. Two- and 
three-dimensional numerical simulations could help in finding the model parameters 
for Reynolds numbers close to the transition range, since the necessary experiments 
seem quite impossible, even for the ‘clean’ ring geometry. 

It is known for circular cylinders that the Reynolds number Re,, where the periodic 
vortex shedding becomes unstable, is sensitive to experimental conditions, such as 
turbulence level or end configurations. Therefore it could not yet be determined with 
certainty if parallel shedding has a higher transition Reynolds number than oblique 
shedding or vice versa. The ring wake results seem to suggest that inclined modes are 
more stable than the parallel mode (figure 18). However, with the parameter variation 
(6.1) proposed for the transition range, the Ginzburg-Landau model predicts a longer 
stability of the parallel mode, so that the experimental result may be linked to the body 
curvature. Even if the effect of the latter is small, it may be sufficient to influence this 
sensitive transition. The question concerning the transition Reynolds numbers of 
oblique and parallel vortex shedding in the wake of an infinite cylinder therefore 
remains open, at least until a precise knowledge of the Ginzburg-Landau parameters 
is available. 

It is important to notice that the transition range is a succession of completely 
different physical phenomena occurring in the near-wake formation region behind the 
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body. The first is a dynamical instability, the Benjamin-Feir instability at Re, z 
18C200, of the essentially one-dimensional (spanwise) system of fluid-dynamical 
oscillators, which the near wake represents. The resulting chaotic motion of mode A 
in the near wake is not what would be characterized as turbulence, i.e. fluctuations in 
large scale, velocity and frequency ranges. The more turbulent motion observed further 
downstream is only a secondary effect, initiated by the three-dimensional distortion of 
the vortices (Williamson 1991, 1992). The second phenomenon is the appearance at 
Re z 220 of small-scale counter-rotating streamwise vortices, presumably as a con- 
sequence of a centrifugal instability of the KBrman vortices in the near wake (Konig 
1993 ; Zhang et al. 1994). This is superimposed on the dynamics of the one-dimensional 
system described by the Ginzburg-Landau equation. Finally the separated shear layer 
instability sets in at Re % 1000 with the appearance of the spanwise Kelvin-Helmholtz 
vortices. 

These three phenomena appear to be apriori uncorrelated and it may be a particular 
feature of the circular-cross section body that they happen in this particular order. 

Up to today, perhaps more than 99 YO of the experimental results concerning bluff 
body wake dynamics at low Reynolds numbers have been obtained from studies of 
straight cylinders with ends, mostly of circular cross-section. However, with the 
recent recognition of the dominating influence of end effects, which is further 
emphasized by the present study, the ring geometry may be a more useful configuration 
to study intrinsic wake phenomena, even with the slight modifications introduced by 
curvature and the undoubtedly more complicated experimental setup. 
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Appendix. Analytical treatment of the Eckhaus and Benjamin-Feir 
instabilities 

The analysis in this section follows the study of Kuramoto (1984) and the results are 
derived for an infinite domain only. The Ginzburg-Landau equation (5.1) and its 
solutions (5.3) can be put in the dimensionless standard form 

by the following transformations (Albarkde 199 1) : 

t‘ = tu, z‘ = z(u/p)l/Z, 

A’ = A(l/g)1/2 exp (- ic, ut), 

SZ’ = SZ/u, Q’ = Q(p/c)’/’. 
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Inserting the non-dimensionalized version of (5.10) in (A 1) and linearizing yield the 
evolution equations for the (already non-dimensional) perturbations a and 4 : 

Choosing perturbations in the form of Fourier modes (5.11) these equations can be 
rewritten as 

” (2) = (- c1 q” + 2iQ’q’ - 2c2( 1 - Q’,) - qr2 - 2ic, Q’q’) (2) . (A41 
- q” - 2 4  Q’q’ - 2( 1 - Q”) c, q” - 2iQ’q’ 

The equation for the eigenvalues A’ is 

with coefficients 
A” + (a, + ia,) A’ + (b, + ib,) = 0 (A 5) 

a, = 2( 1 - Q” + q”), 

b, = (1 + c:) (4”- 4Q”) 4” + 2( 1 + C, c,) (1 - Q”) q”, 

b, = 4 ( ~ ,  - c,) (1 - Q”) Q’q’. 

a, = 4 ~ ,  Q’q’, 

The exact eigenvalues are 

A; = - (1 - Q” + 4”) - 2ic, Q’q’ rtr [( 1 - Q’2)2 + (2Q’q’)’ 

- 2c, c,( 1 - Q”) q’2 + 4ic2( 1 - Q”) Q’q’ + 4ic, - cf q’4]1/2. (A 7) 

For the Eckhaus modulational instability (q’+O), only A: is relevant, since AL+ 
-2(1 -Q”) in this limit, i.e. perturbations are damped for all possible values of 
Q’( < 1). For small q’,A: can be expanded into 

Instability occurs when the real part of this expression (the growth rate a, which is the 
second term on the right-hand side) becomes positive. This happens for 

1 + c, c, 
3 +2c; + c1 c,’ 

Q” > QF = 

The stability limit found by setting Q” = QLz. The result (5.12) for the ring wake is 
obtained by returning to dimensional and physical variables via (A 2 4  e) and (5.2a) 
and by replacing Q by the discrete values Q,. The expressions (5.13) and (5.14) for the 
frequency (the imaginary part in (A 8)) and the growth rate, respectively, are found in 
the same way and by choosing the smallest possible perturbation wavenumber q = 4,. 

(A 10) 
with the relations (A 6 )  for the parameters. It is qualitatively equivalent to the growth 
rate a, and its expression is obtained for the condition that, at the stability limit, one 
of the eigenvalues A’ in (A 5) is purely imaginary. For details see the discussion by 
Kuramoto (1984). The Reynolds number dependence enters via (A 2e) and (5.2a). 

The function W of figure 28 is defined as 

W E bi -a, a, b, - a; b,, 
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For the Eckhaus instability to occur, the spanwise wavenumber has to pass a critical 
value, the uniform oscillation, or parallel mode, always being stable. However, under 
different circumstances, this parallel mode can also become unstable. For Q’ = 0 the 
stability function reduces to 

W = - 8( 1 + q’2)2 q’2[ 1 + C, c2 ++( 1 + c;) q’2]. (A 11) 

The stability of the uniform oscillation is now governed by the sign of the expression 
1 +c, c,. For positive values, W is negative for all perturbation wavenumbers q’, 
implying stability. As soon as 1 + c, c2 < 0, there exist finite q’ close to zero for which 
Wbecomes positive. In the latter case all plane wave solutions are unstable, not just the 
ones with Q’ > QL as for the Eckhaus case discussed above. This is the Benjamin-Feir 
instability. The mechanism by which the uniform oscillation is destabilised is very 
similar to the Eckhaus case, i.e. by long-wavelength phase modulations due to the 
resonant excitation of sideband disturbances. However, their exponential growth is not 
accompanied by phase oscillations, since the corresponding eigenvalue has no 
imaginary part (Kuramoto 1984). Under certain approximations the quantity 1 + c ,  c, 
may be interpreted as the diffusion coefficient for the phase of A’ (Kuramoto 1984), 
and it is intuitively clear that a negative diffusion coefficient leads to a (violent) 
instability. 
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